Developing a dynamic pharmacophore model for HIV-1 integrase.

نویسندگان

  • H A Carlson
  • K M Masukawa
  • K Rubins
  • F D Bushman
  • W L Jorgensen
  • R D Lins
  • J M Briggs
  • J A McCammon
چکیده

We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of "dynamic" pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a "static" pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors.

We present here a dynamic receptor-based pharmacophore model representing the complementary features of the active site region of HIV-1 integrase (IN), which was developed from a series of representative conformations of IN. Conformations of IN were sampled through a molecular dynamics study of the catalytic domain of an IN monomer, and an ensemble of representative IN structures were collected...

متن کامل

Method for Including the Dynamic Fluctuations of a Protein in Computer-Aided Drug Design

We have recently presented a new pharmacophore design method that allows for the incorporation of the inherent flexibility of a target active site. The flexibility of the enzymatic system is described by collecting many conformations of the uncomplexed protein; this ensemble of conformational states can come from a molecular dynamics (MD) simulation, multiple crystal structures, or many NMR str...

متن کامل

Computational screening of inhibitors for HIV-1 integrase using a receptor based pharmacophore model

The HIV (human immuno-deficiency virus) integrase has a crucial role in viral replication. Moreover, it has no cellular homologue in humans. Hence, it is considered as an attractive drug target. Many inhibitors against the integrase protein has been designed and discussed. The Y-3 inhibitor (4-acetyl amino-5-hydroxy naphthalene - 2, 7- disulfonic acid) is already known to inhibit HIV-1 integras...

متن کامل

Pharmacophore modeling of some novel indole b-diketo acid and coumarin-based derivatives as HIV integrase inhibitors

To design new chemotypes with enhanced potencies against the HIV integrase enzyme, 3D pharmacophore models were generated and QSAR study was carried out on 44 novel indole b-diketo acid derivatives and coumarin-based Inhibitors. A five-point pharmacophore with two hydrogen bond acceptors (A) and three aromatic rings (R) as pharmacophore features was developed by PHASE module of Schrodinger suit...

متن کامل

Structural requirements for potential HIV-integrase inhibitors identified using pharmacophore-based virtual screening and molecular dynamics studies.

Acquired immunodeficiency syndrome (AIDS) is a life-threatening disease which is a collection of symptoms and infections caused by a retrovirus, human immunodeficiency virus (HIV). There is currently no curative treatment and therapy is reliant on the use of existing anti-retroviral drugs. Pharmacoinformatics approaches have already proven their pivotal role in the pharmaceutical industry for l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 43 11  شماره 

صفحات  -

تاریخ انتشار 2000